If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+2X-702=0
a = 1; b = 2; c = -702;
Δ = b2-4ac
Δ = 22-4·1·(-702)
Δ = 2812
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2812}=\sqrt{4*703}=\sqrt{4}*\sqrt{703}=2\sqrt{703}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{703}}{2*1}=\frac{-2-2\sqrt{703}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{703}}{2*1}=\frac{-2+2\sqrt{703}}{2} $
| 5y+6-12y=−29 | | (8x-2)2=12x+24 | | 40n-5n=-2 | | 5y+6-12y=(−29) | | 8/3x-9/4x=-52/12 | | 14z+100=4z | | 6-3x=10x+6 | | F(t)=-2t+7 | | 4/5/3=x/100 | | 20d/30=38 | | 15x-(12+11x)+(23-3x)=12 | | 10x^-11x-1=0 | | 9z+12=9 | | k-13=2+17 | | 34-11x=14+9x | | 5n-9=-12 | | 4b+4b+12-7b=11 | | 1.2*10-5=4x3+0.010x | | (2x-3)/(7x+4)=2/5 | | .10x(x)=4600 | | 3/1/2=c | | x^2+5x-20=16 | | –42g–150=–24 | | 83f–51=–51 | | -(5-(a+1))=9-(5-2a-3)) | | 2x-3/7x+4=2/5 | | 5x/6=35/6 | | x=182120+.03x | | x^2-94x+1=0 | | 5x-11=71 | | –27d+18=72 | | 3x/2-15/2=2x/3-5/3 |